Group III Base Oils - What’s on the Horizon?

AFPM Conference, Houston, TX
November 1-2, 2012

Mike G Brown, Ph.D.
Technical Manager
Contents

1. Macro Analysis: Group III Demand
2. Impact of Key US Regulations
3. Impact of Consumer Trends
4. Upcoming Group III Expansions
5. Conclusions
Group III Applications

Applications:
- Engine Oils, 83%
- ATF, 7%
- Industrial Oils, 8%
- Others, 2%

Source: SK Lubricants
Macro Analysis –
Group III Base Oil Demand

Group III actual demand likely to be BIGGER than forecast
Group III Demand by Region

2010 to 2015: +12.2% pa growth rate adjusted for economic slowdown

Source: SK Lubricants
Contents

1. Macro Analysis: Group III Demand
2. Impact of Key US Regulations
3. Impact of Consumer Trends
4. Upcoming Group III Expansions
5. Conclusions
US Regulation – Auto Gasoline

Gasoline engine CAFE requirements by 2016

35.5 miles per gallon (15.1 km/L).

CAFE = Corporate Average Fuel Economy

<table>
<thead>
<tr>
<th>Miles per gallon</th>
<th>2011 CAFE</th>
<th>2016 CAFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td>27.5</td>
<td>42</td>
</tr>
<tr>
<td>Light duty trucks</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Combined Fleet</td>
<td>27.3</td>
<td>35.5**</td>
</tr>
</tbody>
</table>

On April 1, 2010, EPA & NHTSA finalized on 34.1 mpg giving credits for A/C improvements and using footprints for each make and model sold.
OEMs Shift To Lower Viscosity

<table>
<thead>
<tr>
<th>OEM</th>
<th>0W-20</th>
<th>5W-20</th>
<th>5W-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>Main Grade</td>
<td></td>
<td>1.5L, 3.5L</td>
</tr>
<tr>
<td>Ford Cars, Trucks</td>
<td></td>
<td>Main Grade</td>
<td>4.0L SOHC, 3.5L,</td>
</tr>
<tr>
<td>GM, Chevrolet Cars & Trucks</td>
<td></td>
<td></td>
<td>Main Grade, dexos™1</td>
</tr>
<tr>
<td>Honda</td>
<td>Main Grade</td>
<td>2.4L Element, 3.5L Ridgeline, 3.7L MDX</td>
<td></td>
</tr>
<tr>
<td>Nissan</td>
<td></td>
<td></td>
<td>Main Grade</td>
</tr>
<tr>
<td>Hyundai</td>
<td></td>
<td>Main Grade</td>
<td></td>
</tr>
<tr>
<td>Chrysler</td>
<td></td>
<td>Main Grade</td>
<td>2.4L turbo (0W-40), 3.6L, 3.5L (10W-30)</td>
</tr>
</tbody>
</table>

Where can OEMs go below SAE 0W-20 to get more fuel economy?

Source: OEMs, 2011, 2012 model years
Lower Viscosity Increases Fuel Economy

Lower viscosity (HTHS viscosity) is the proven road to more fuel economy for newer, low friction engines.

ILSAC GF-5, API SN Additive Systems

Seq VID Test Matrix Results

Fuel Economy, % FEI Sum

HTHS Viscosity , mPaS @ 150 C

Lower viscosity (HTHS viscosity) is the proven road to more fuel economy for newer, low friction engines.
Proposed Grades for SAE J300

Goal: Extend SAE J300 to lighter engine oil viscosities**

- SAE xW-40: 3.5/3.7 cP minimum
- SAE xW-30: 2.9 cP minimum
- SAE xW-20: 2.6 cP minimum

*16” 2.3 cP minimum
*12” 2.0 cP minimum
*8” 1.7 cP minimum

New grade for GF-6

Future grades in development

** SAE Paper: 2010-01-2286: Extending SAE J300 to Viscosity Grades below SAE 20
New SAE Oil Grade ➔ xW-16

- Some JAMA ‘genuine’ oils deliver more fuel economy
- Requested new SAE grades with uniform specifications
- ILSAC GF-5 doesn’t apply to SAE xW-16 grades, yet, ILSAC GF-6 (1/1/2016?) will add a new category for them

Next Generation: ILSAC GF-6B

Performance standard for SAE 0W-16, 5W-16 oils

Expectation ➔ MORE FUEL ECONOMY

Challenges ➔ Use only in specific vehicles

ILSAC = International Lubricant Standardization and Approval Committee
Examples of SAE 0W-16

Very similar to SAE 0W-20, but with less Viscosity Modifier

<table>
<thead>
<tr>
<th></th>
<th>SAE 0W-20</th>
<th>SAE 0W-16 Same BoV</th>
<th>SAE 0W-16 Lower BoV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group III Base Oil Viscosity, cSt@100°C</td>
<td>4.75</td>
<td>4.75</td>
<td>4.13</td>
</tr>
<tr>
<td>ILSAC GF-5 DI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Viscosity Modifier, wt%</td>
<td>6.75</td>
<td>3.75</td>
<td>5.25</td>
</tr>
<tr>
<td>Finished Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KV, cSt@ 100°C</td>
<td>8.7</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>HTHSV, cP@ 150°C</td>
<td>2.62</td>
<td>2.34</td>
<td>2.36</td>
</tr>
<tr>
<td>CCSV, cP@-35°C</td>
<td>5,269</td>
<td>4,969</td>
<td>3,850</td>
</tr>
</tbody>
</table>

Source: SAE 2010-01-2286, Table 6
ILSAC GF-6 Raises the Bar

- More fuel economy
 - Viscosity control and friction modifier effectiveness throughout the service interval
- “Robust” oil performance to protect engines
 - 4 new Sequence engine tests (Seq III, IV, V, VI)
- Plus, attention to 3 new areas of OEM concerns
 - LSPI- low speed engine pre-ignition in smaller displacement and boosted intake (turbo) engines
 - Idle Stop engine wear protection – timing chains, valve train
 - Oil aeration limits – for new and used oil
Link between Viscosity Increase and Oil Volatility?

- Viscosity increase as oil ages in service reduces fuel economy
- Oil volatility has a direct impact on oil viscosity increase due to the evaporation of light base oil components
- Sequence IIIG engine test
 - high intake air temperature
 - high operating loads
 - long test length
 - reduced oil additions
- ILSAC GF-6 seeks a 100% limit on “end of test” viscosity increase vs 150% limit for GF-5
- Will Sequence IIIH engine have same behavior as Sequence IIIG?
Sequence IIIG Engine Test

- Citation below** is for a (15% Noack) 5W-30 with Group II+ base oil
- 70% of the viscosity increase is due to evaporation of oil**

** SAE 2007-01-1961, Boffa and Hirano, Chevron Oronite, “Formulation Impacts on Sequence IIIG Viscosity Increase”
Higher VI base stocks \rightarrow Lower oil volatility
Lower oil volatility reduces % viscosity increase

** SAE 2007-01-1961, Boffa and Hirano, Chevron Oronite, “Formulation Impacts on Sequence IIIG Viscosity Increase”
Fuel Economy vs. “Extended” (GM EOLS) Oil Change Intervals

- Viscosity increase is negligible in most types of service with high-quality (dexos, GF-5) oils
- Friction modifier depletion is relatively minor with oils showing good FE retention in the Sequence VI test
- Quantifying effect in vehicle dyno tests

During Q&A, GM confirmed 13% max Noack was an essential property of the dexos™ engine oil to obtain
- negligible viscosity increase
- retained fuel economy

STLE, May 7, 2012
Fuel Economy – An OEM’s Perspective
Slides used with permission of GM
US Regulation – Truck HD Diesel

EPA & NHTSA : Finalized Aug 9, 2011

• Improves truck fuel economy and reduces GHG emissions
• Voluntary compliance period 2014-2015 MY
• Mandatory compliance beginning with 2016 MY

Semitrucks HD pickups/vans Vocational trucks

EPA = Environmental Protection Agency
NHTSA = National Highway Traffic Safety Administration
PC-11: Adds a Fuel Economy Category

- PC-11 is the Proposed Category to replace API CJ-4
 - CJ-4 has a minimum HTHS viscosity of 3.5 cP
 although most 15W-40 HDDEO products are in the range of 3.7 to 4.2 cP HTHS viscosity

- Fuel economy grades are likely to have HTHS viscosity range of 2.9~3.3 cP HTHS viscosity

- Fuel efficient HDD oils will need Group III to balance high DI package treats (ashless dispersants for soot)

- How much, depends on DI and VM appetites in PC-11 performance standard
 - Group III could be 80% or more of the base oil mix for 5W-30
Contents

1. Macro Analysis: Group III Demand
2. Impact of Key US Regulations
3. Impact of Consumer Trends
4. Upcoming Group III Expansions
5. Conclusions
Full Synthetics Sales Increased

Full Synthetics meet very demanding performance standards. Group III and IV base stocks are required to achieve those standards.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional/synthetic blend</td>
<td>72</td>
<td>68</td>
<td>70</td>
<td>59</td>
</tr>
<tr>
<td>Full synthetic</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>High mileage (*)</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Diesel engine oil</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Re-refined/"Green"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

(*) Use Group III in the product to reduce oil volatility and oil consumption in high mileage engines.

Source: LT30 Operator Category, National Oil and Lube News, Sept 2012
Synthetic Tiers Shifting

Grps III, IV

- Synthetic
- Synthetic: Full, Blend
- Premium Synthetic
- Ultimate Synthetic

Grps I, II, III

- Conventional Oil
- High Mileage
- High Mileage
- High Mileage

Historical

- 5W-20, 5W-30, 10W-30
- 2001
- 2009
- 2012
SAE 0W-20 needs higher VI base stocks (Groups III, IV)

<table>
<thead>
<tr>
<th>Percentage of SAE Grades</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>0W-20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5W-20</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>5W-30</td>
<td>49</td>
<td>46</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>10W-30</td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>5W-40, 15W-40</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

200 million gasoline vehicles in USA
13 million new car sales in 2011, 15 million rate for 2012
Average vehicle life >10 yrs

Source: LT30 Operator Category, National Oil and Lube News, Sept 2012
Sales of GM dexos™ 1 5W-30

GM dexos™ products use Group III base stocks to reduce Noack volatility <13.0% and achieve dexos™ engine performance.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT30 Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operators offering dexos™-licensed oils</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>Customers buying dexos™-licensed oils</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>MT30 Stores</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Source: National Oil and Lube News, Sept 2012
Consumers want power and fuel economy

- Engine designs evolve to get more fuel economy
 - Smaller displacement
 - Turbocharged
 - Variable Camshaft Timing (VCT)
 - Direct fuel injection
 - Coated piston rings
 - Hybrid power train

- Engine oil technology evolves
 - Additive technologies
 - Higher VI base stocks for low volatility, increased thermal stability
 - Engine oil as hydraulic oil in VCT hardware
Base Oil Quality Response

Fuel Economy

- Friction Modifiers
 - Good Additive Response
 - SAE 0W vs 5W Viscosity
 - Higher Viscosity Index

Performance Demands

Desirable Base Oil Properties
Low Engine Oil Volatility Resists Viscosity Increase

Higher VI, Narrow-cut Grades

Longer Drain Interval

Oxidation & Sludge Control

More DI Additives

Good Additive Response

Performance Demands

Desirable Base Oil Properties
Base Oil Quality Response

ILSAC GF-5, -6, Synthetics, (GM dexos™)

Less Deposits, Reduced Wear, Tougher Tests, Turbo Proven

Low Oil Volatility

High Oxidation Stability

Performance Demands

Desirable Base Oil Properties
Contents

1. Macro Analysis: Group III Demand
2. Impact of Key US Regulations
3. Impact of Consumer Trends
4. Upcoming Group III Expansions
5. Conclusions
Expanding Group III Supply

- Fuels Hydrocrackers (HCR) provide a major volume of feed stocks for Group III base oils
 - Existing HCR and new LS Distillate Fuel units
 - Different feed stocks and Group III process schemes

- Fischer –Tropsch process (Gas To Liquids) Group III

- New Group III Players & Traders entering the market

- Interchange across Group III slates must be proven according to API, ATIEL and OEM rules

- Global coverage increasing by leading suppliers having multiple plants
Increasing HCR Feedstocks

Feedstock Availability for Group III Base Oil

Source: Global Refinery Hydrocracking Units to 2012
Capacity vs Supply

Nameplate Capacity
- Public domain
- Some information not accurate

Operating Rate
- Feedstock economics
- Refinery competency
- Proven track record

Stream Day
- Reliability
- Maintenance T/A
- Accidents, Weather, Earthquakes, Political interruptions

Yield
- Consistent quality
- Pipelines to Global Markets

Base Oil Actual Supply

Group III actual supply likely to be SMALLER
Group III supply continues to grow

- New Group III plants have started production:
 - Neste-Bapco in Bahrain (8,000 Bpd)
 - Shell in Qatar (11,000 Bpd)
 - SKL-JX in South Korea (10,000 Bpd)
- Takreer, Abu Dhabi in 2013 & SKL-Repsol, Spain in 2014
- Will Chinese National Oil Majors and other new players produce Group III or just Group II?
- Announcements are based on nameplate, not actual operation
Contents

1. Macro Analysis: Group III Demand
2. Impact of Key US Regulations
3. Impact of Consumer Trends
4. Upcoming Group III Expansions
5. Conclusions
Conclusions

- Consumer trends: more synthetics, more synthetic tiers
- OEMs: lower viscosity SAE 0W-20 and lower volatility dexos™ 5W-30 increasing Group III demand
- SAE J300 expanding to SAE xW-16
- Engine designs evolving to increase power and fuel economy
- Lower viscosity oils and more robust formulations (ILSAC GF-6, PC-11) increase Group III demand
- Group III supplies expanding
Thank you

Mike Brown
Mike.Brown@SK-Houston.com
908-751-5030
yubase.com